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Abstract

Wheeled-legged robots can cope with tough terrains in an energy-efficient way with
the help of wheels, while it also preserves its ability to negotiate complex terrains
through the presence of the leg. To achieve various tasks in different terrains, tra-
jectory optimization (TO) is required to serve as guidance. Furthermore, a model
predictive control (MPC) feedback planner is utilized to track this reference trajec-
tory.

In this thesis, we model the robot as a single rigid body, and the customized TOWR
is used to handle the wheeled-legged robot trajectory optimization problem. The
tracking reference is converted into joint space via inverse kinematics and be fed
into MPC as guidance. We achieve this by adding the trajectory to the cost term
of the MPC. A whole-body controller is used to generate torque commands for
the real robots. The framework is verified on simulation and hardware. We show
that such a framework can be modularized and TOWR can be replaced by other
optimizers. MPC can help correct the infeasibility of the trajectory to make it
physically practicable, as well as smooth the trajectory to avoid wild motions. Such
a trajectory-correction scheme can be further explored to realize online trajectory-
computing and tracking.
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Acronyms and Abbreviations

MPC model predictive control

WBC whole body controller

TO trajectory optimization

OCP optimal control problem

NLP nonlinear programming

TOWR trajectory optimization for walking robots

SCP simulation control playground
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Chapter 1

Introduction

1.1 Motivation

Legged robots, such as ANYmal [1] have recently shown great ability to cope with
challenging terrains, such as forest exploration, slope, stairs, and also provides ca-
pability in extreme environments. While it allows the robot to exhibit complex mo-
tions, it is inefficient in speed and also energy-consuming. Wheeled-legged robots,
on the other hand, can cope with tough terrains at a higher speed with the help
of wheels, while at the same time, preserve its ability to negotiate complex terrains
through the presence of the leg. To explore these two benefits requires the robot
to accurately generate the trajectory and in the meantime, track the trajectory
with online algorithms. What’s more, in the real world, the robot also has to cope
with uncertainties from the environment, especially from the estimation error of
the terrain. If the robot ignores the error and goes all the way along the generated
trajectory, it may end up with unluckiness due to some violations of constraints
such as dynamic constraints. To this end, model predictive control (MPC) has re-
cently appeared on stage. It takes the perturbed state into consideration and looks
ahead for a long horizon to smooth the trajectory. In this thesis, we will explore
the possibility of bridging trajectory optimization and MPC-feedback control, and
apply it on a customized ANYmal equipped with wheels.

1.2 Related Work

Equipping a quadrupedal robot with a wheel is not a new approach. A steerable
robot that can conduct hybrid locomotion is developed recently [2]. However, its
leg can only move in the sagittal plane and lacks the flexibility of a legged robot.
Multiple levels of abstraction of trajectory planning for driving-stepping locomo-
tion is also proposed [3] but is still restricted to a single gait motion. A customized
ANYmal robot with non-steerable wheels [4][5] is also developed and able to con-
duct highly dynamic and complex motions.

Trajectory optimization for the wheeled-legged robots essentially shares a lot in
common with legged robots. They differ in the way the constraints are enforced at
the wheels when they are in contact with the ground. To simplify the real robot
case, some assumptions are usually required to reduce the computation complexity.
Two techniques are often used in solving the trajectory optimization: 1. decom-
pose the problem into some subproblems which are computationally easier to solve;
2. using heuristics to obtain part of the solution. An example using both tech-
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Chapter 1. Introduction 2

niques is the policy-regularized model predictive control [6] for the quadrupedal
robot MIT Cheetah [7]. In this paper, the authors introduce heuristics to guide the
optimization, while penalizing the deviation from it. [8] provides another approach
by optimizing over swing times along the trajectory. Heuristics comes in the form
of an initial guess of trajectory and an estimated time steps required to reach the
target.

The gait of the robot is usually hard to design and requires hand-tuning. This
problem can also be translated into finding a sequence of contact and non-contact
phase for each foot (wheel). Mix-integer optimization can solve the foot-placement
problems and there are several approaches that apply this algorithm on the real
robots [9], [10]. In practice, such problems decompose the motion of the robot into
a foot-placement optimization task and a torso trajectory computation. [8] opti-
mizes the gait and torso trajectory simultaneously, but is prone to local optimum
and therefore, heavily depend on a good initialization. SkaterBots [11] shows a sim-
ilar approach that couples the torso trajectory and gait generation into the same
framework.

While inheriting from the trajectory optimization for legged robots, research on
TO for wheeled-legged robots is also active, and due to its novelty, the planning
method for a highly dynamic, complex hybrid motion is limited. A whole-body
motion controller equipping a non-steerable robot [5] and a whole-body walking ex-
cavator [12] are proposed based on the optimization framework verified on a proven
phase-dependent optimization method [8].

Within robotics, there is an increasing interest in MPC. Modern approaches nor-
mally provide model predictive control by solving a nonlinear optimization problem
and a control sequence over the receding horizon can be determined. It has been
proven efficient in many applications and areas, such as autonomous racing [13] and
legged locomotion [14][15][16]. MPC coupled with the whole-body controller has
been recently explored in [17]. This paper utilizes MPC to guide the torque behav-
ior of a low-level controller and shows the possibility of bridging low update-rate
MPC and high-frequency torque commands.

1.3 Contributions

In this thesis, we bridge the trajectory optimizer and the online MPC-feedback con-
troller. The controller connects to a whole body controller (WBC) and will control
the wheeled-legged robot. We utilize the MPC framework proposed in [17] and
TO adapted from [8]. We verify the framework by implementing on the real robot
and address the importance of MPC in stabilizing the robot as well as smoothing
the trajectory. We also generate the trajectory for tough terrains and propose the
possibility of having a relaxed trajectory in order to make the whole process online.

1.4 Thesis Outline

In Chapter 2 we will formulate the trajectory optimization for the wheeled-legged
robot and introduce how to couple this with an MPC framework. In Chapter 3 we
will give some implementation details and analysis of the results. We will conclude
the thesis in Chapter 4.



Chapter 2

Formulation

2.1 Framework Overview

In this section, the framework that incorporates TO and MPC is provided. We
will generate trajectories offline and use MPC to track these trajectories. Firstly a
human user will command a message to a smart initialization module of TO. Based
on the terrain information and the target position as well as an estimation of the
trajectory horizon, the smart initialization module will initialize the trajectory in a
proper way. This is due to that TOWR, which will be used as our main trajectory
optimizer in this project, utilizes an NLP solver and can find a local optimum ef-
ficiently. The trajectory generated will be translated into joint space and fed into
the MPC controller together with current measured robot states. MPC runs at a
frequency of 20 Hz and will compute the desired control plan for a high-frequency
low-level controller. The final torque is generated by drivers and given to the real
robot. The detailed overview is shown in Fig. 2.1. The trajectory optimization part
is computed offline and MPC computing is completely online. We will also explore
the possibility of making the whole process online at the end of the report.

Besides, as depicted by a brown dash-box, the trajectory optimizer can be replaced
by any other optimizer. For example, Simulation control playground (SCP) [11] has
been validated on this framework as well.

2.2 Trajectory optimization

This section formulates the TO problem for wheeled-legged robots and reformulates
it as an NLP problem. Normally an NLP is usually computing demanding consid-
ering our dynamic is highly nonlinear and with high dimension. We address this
issue by coping with a feasibility problem instead of minimizing a cost in the usual
sense. The goal of our motion optimizer is therefore to solve the Optimal Control
Problem (OCP) as follows:

find x(t), ẋ(t) (2.1)

subject to x(0) = x0, x(T ) = xf , (2.2)

h(x(t), ẋ(t), ẍ(t)) ≥ 0, (2.3)

g(x(t), ẋ(t), ẍ(t)) = 0, (2.4)

where x(t) is the set of decision variables, and usually given by the position and
orientation of the CoM, wheels contact points’ positions, and contact forces. User
will input the initial state x0, final state xf and the time duration T . In our setting,

3



Chapter 2. Formulation 4

Figure 2.1: Overview of the MPC-feedback trajectory optimization framework. The
human operator will command a message first to the TO, with smart initialization,
TO will generate a feasible trajectory that will be fed into the MPC controller after
passing through inverse kinematics. MPC uses this joint space trajectory as well as
the measured robot state to compute the desired control plan. It will be fed into a
low-level controller and a torque will then be given to the real robot.

we actually have a desired average speed towards the destination and hence the time
duration should adjust to it together with the target position after driving over the
terrain.

2.2.1 Direct Collection

We transcribe OCP into a Nonlinear Programming (NLP) by employing Direct
Collection Shooting, where the continuous time-variant state is parameterized by a
cubic polynomial and defined within a variable time duration ∆T . Therefore, the
total time duration can be split into T = [∆T1, ∆T2, ...∆TN ] and

∑N
i=1∆Ti = T .

On each duration, a cubic can fully describe the state with Hermite parametrization.

x(t) = a0 + a1t+ a2t
2 + a3t

3, (2.5)

where ai = f(xk, ẋk, xk+1, ẋk+1, ∆Ti), ∀ k ∈ [0, N − 1]. The equivalence between
the state and the cubic polynomial allows us to optimize the state of the robot
directly instead of the polynomial coefficients. This gives us the convenience to
formulate the optimization and also helps simplify the implementation of NLP. The
reason why we use the direct collection method is that we can hence apply nonlinear
programming methods and it allows us to formulate and utilize the NLP solver much
efficiently with the broad solver options available.

2.2.2 NLP formulation

In this section, we will illustrate the NLP problem in detail and explore its com-
ponents. The formulation is shown as following equations. The right superscript
denotes the coordinate component of the vector and the left superscript denotes
the reference frame: I indicates the inertial frame, B indicates the base frame, Wi

indicates the ith fixed wheel frame, and Ci denotes the wheel contact frame, origi-
nate on the contact point on the ground. The formulation differs from the pointed
end effector [8] in that the velocity of the end effector is no longer zero due to the
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existence of the wheel; instead, we include a rolling constraint to ensure consistency
with the locomotion.

find r(t)I ∈ R3 (CoM linear position)

θ(t)I ∈ R3 (base euler angles)

for every wheel i :

∆Ti,1, ...,∆Ti,N ∈ R (phase durations)

pi(t)
I ∈ R3 (wheels’ motions)

fi(t)
I ∈ R3 (wheels’ forces)

s.t. [ rI , θI ](0) = [ rI 0 , θI 0 ] (initial state)

[ rI , θI ](T ) = [ rI g , θI g ] (goal state)

Fd( rI , θI , pI i , f
I

i ) = 0 (dynamic model)

for every wheel i :

pI i ∈ Ri( r(t)I , θ(t)I ) (kinematic model)

if wheel in rolling:

pzi
I = hterrain( px,yi (t)I ) (terrain height)

fz
i (t)Ci ≥ 0 (normal force)

fx
i (t)Ci ≤ fmax (maximum torque)

ṗi
y(t)Ci = 0 (rolling constraint)

fz
i (t)I ∈ F(µ,n, px,yi (t)I ) (friction cone)

if wheel in step:

fi(t)
I = 0 (no force in air)

N∑
j=1

∆Ti,j = T (total duration)

Dynamic and kinematic constraints

The robot is approximated by a single rigid-body whose mass is centered at the
torso. We assume the mass of the legs is negligible compared to the base, which
simplifies the dynamics of the system. This assumption is reasonable in that most
robots have all the hardware components, such as the battery, the sensors, and the
embedded electronics located at the base.
Based on this simplified model, the robot’s dynamic equations are

m r̈(t)I =

4∑
i=1

fi(t)
I −m gI , (2.6)

I ω̇(t)I + ω(t)I × I ω(t)I =

4∑
i=1

fi(t)
I × ( r(t)I − pi(t)

I ), (2.7)

where ω(t)I denotes the angular velocity of the base in the inertial frame, m denotes
the mass of the robot. Noticed that here the orientation is described by Euler
angle, however, there are also other methods available such as quaternions and the
transformation detail can be found in any robotics book.
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Contact constraints

• Terrain constraints
To make the robot move efficiently, we will assume the most of the time the
robot would be in the driving phase, which means we need to impose addi-
tional physical constraints on the wheel’s motion and contact forces. Firstly,
all wheels have to be in contact with the terrain, therefore satisfying the con-
strains:

pzi (t)I = hterrain( px,yi (t)I ), (2.8)

where hterrain contains the terrain information and is a function of the ground
plane coordinate.

• Non-negative constraint Being in contact with the ground also implicitly
adds the non-negative constraints for the normal contact forces:

fni
(t)I = fz

i (t)Ci ≥ 0. (2.9)

• Non-slippery constraint The non-slippery constraint remains the same as
the legged robot case, we approximate the Coulomb friction cone by a friction
pyramid, which linearizes the constraint and speed up the computation.

−µ fni
(t)I ≤ fx

i (t)Ci ≤ µ fni
(t)I , (2.10)

µ fni
(t)I ≤ fy

i (t)Ci ≤ µ fni
(t)I . (2.11)

• Rolling constraint In the driving phase, due to that our robot’s wheel is
non-steerable, we also need to enforce a rolling constraint:

ṗy(t)Ci = 0. (2.12)

2.2.3 Initialization

Due to the non-linearity of our formulation, it is important to have a proper initial-
ization. Some general points need to be taken into consideration.

Gait generation

Gait can be chosen by human command and is realized by initialing the robot state
to have a corresponding phase duration. Fig. 2.2 shows an initialization of pace
motion. It is a hybrid motion that the robot can simultaneously drive and step.
The generated solution may not be identical because the phase duration is also an
optimized variable and will be changed. However, the change is slight and the pace
gait is preserved because NLP will find the solution around the initialization point.

Discontinuous terrains

For discontinuous terrains, the problem arises that the gradient of the constraints
is theoretically not well defined in the discontinuous point. Typically we set it as
zero and it doesn’t make much difference as a finite accountable number of points
won’t be selected in the discretized case. Therefore the terrain constraints have to
be satisfied in the initialization. One way to handle this issue is to use a steep slope
to approximate the stair.
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Figure 2.2: An initialization example of pace gait. LF (left front leg) and LH have
identical phase duration and RF and RH have identical phase duration. There is
an overlap in the rolling phase which means the robot is completely driving while
in other cases it is conducting a hybrid motion.

2.2.4 Inverse kinematics

In TOWR, we consider a simplified single rigid body and ignore the joints. However,
for MPC which will be discussed in the next section, it requires base positions,
velocities, and joint positions as input, we then need to pass the trajectory into an
inverse kinematics solver to generate the trajectory in the generalized joint space.

2.3 MPC-feedback Control

To track the generated trajectory despite the disturbance, both from parameter
space and the real world noise, MPC is used in this project. MPC will further
generate a control plan to be fed into low level controller and generate the torques
required to control the real robot.

2.3.1 General MPC formulation

The general MPC is to find the optimal control sequence u(·) to minimize the cost
along the a time period.

min
u(·)

Φ(x(T )) +

∫ T

0

L(x(t),u(t), t)dt, (2.13)

where x(t) is the state and u(t) is the input at time instance t. L(·) is a time-
varying cost function, which in many cases is approximated by a quadratic cost
function. The goal is to find the optimal control that minimizes this cost subject to
the following system dynamics, initial condition, and some equality and inequality
constraints:

ẋ = f(x,u, t) (2.14)

x(0) = x0 (2.15)

g(x,u, t) = 0 (2.16)

h(x,u, t) ≥ 0. (2.17)

2.3.2 Feedback MPC

The above problem is an open-loop prediction and has no feedback inputs. We add
the feedback gain to compensate the deviation from the optimal state trajectory,
and use the policy π(x, t) as input to the WBC.
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π(x, t) = u∗(t) +K(t)(x(t)− x∗(t)), (2.18)

where x∗ and u∗ are state trajectory and optimal control respectively. The tech-
niques used in choosing a proper feedback gain K is illustrated in detail in [17]



Chapter 3

Results

In this chapter, we will in detail describe how we conduct the experiment and
analyze the results.

3.1 Implementation

3.1.1 Inverse kinematics

We use an iterative method to compute the joint angles, The pseudo-code is illus-
trated as follows. We use the line search method to find the maximum step size at
each iteration.

Algorithm 1: Iterative inverse kinematics

Result: Joint angles q∗

initialization q = qdefault;
while Not Converged do

1. Compute Jacobi matrix;
2. Line Search to find optimal step size;
3. Update q using gradient method;

end

The complete code can be found at the Bitbucket repo.

3.1.2 Initialization

Swing phase

One important point when initializing the wheel positions is to make sure the swing
phase is a proper value to be fed into MPC as MPC explicitly set the swing height,
and therefore a too large or small swing phase would cause a problem in interpolating
the swing phase. An example of trotting motion is depicted in Fig. 3.1.

Discontinuous stair

As illustrated in the second chapter, when it comes to a discontinuous terrain, the
initialization is crucial to get a feasible solution. A general approach of walking over
a stair for a quadrupedal robot would be stepping over one leg at a time. In order
to make sure that all terrain constraints are satisfied in initialization, we tune the
speed of the robot to 1.4m/s and set the initial phase duration as {0.48, 0.3, 1.62},
{0.52, 0.3, 1.58}, {1.68, 0.3, 0.42} and {1.72, 0.3, 0.38} for LF, RF, LH and RH leg
respectively. An illustration is described in Fig. 3.2.

9
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Figure 3.1: An example of phase duration: trot motion. This motion has a total
duration of 2.4 seconds and has 9 separate phases for the LF leg. The swing phase
is about 0.33 seconds.

Figure 3.2: An example of a feasible stepping motion in term of terrain constraints.
The robot starts with a driving, after it senses the stair, it lifts its leg in the order of
LF, RF, LH, RH. While stepping over the stair, the robot is simultaneously driving.
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3.2 MPC Optimization Illustration

In this project, all trajectories are set to have a horizon of 2.4 seconds and have a
sampling frequency of 50 Hz. MPC has a horizon of 1 second and will be imple-
mented at 20 Hz.

Figure 3.3: Comparison between TOWR trajectory and the MPC-optimized tra-
jectory. On the left is a snapshot from trotting motion and on the right is the
gap motion. The desired trajectory is generally longer than the predictive horizon.
No disturbance is introduced in MPC computing, the MPC-optimized trajectory is
solely dependent on the parameters used in the MPC framework, which are tuned
based on the ANYmal robot. Therefore, the MPC-tracking performance is out of
the scope of this project (practically this tracking is very well).

3.3 Simulation

The simulations were carried out in the robot simulation environment using the full
rigid body dynamics of the ANYmal robot. In order to verify the tracking perfor-
mance of our MPC-feedback controller, Fig. 3.4 shows the desired motions com-
pared with the measured positions with jumping over gap motion. MPC-feedback
controller can well track the desired trajectory both for base position and wheel po-
sitions. The average tracking error along the whole trajectory is 6 cm for the base.
The top-right picture depicts that the measured pitch angle is smoothed compared
to the desired orientation as MPC punishes wild motions by adding a cost function
about it. In this way, MPC can quotient out some wild motions and make the com-
puted trajectory practically more feasible. The bottom-left picture of this picture
also shows the initial velocity of the robot is not zero. It is due to the fact that
MPC looks several steps ahead and blend between transitions.

Fig. 3.5 shows that the contact forces for each wheel are well tracked under the
MPC-feedback controller. In all four subfigures, there is a period when the contact
force is zero, which shows that the corresponding wheel is in the air and performs
a jump.

Fig. 3.6 compares the wheel position in z-direction between the desired and the
measured trajectory. MPC explicitly sets the swing height to 10 cm while the de-
sired swing height is dependent on the NLP solution.

We did some simulation about other motions, and plots are included in the Ap-
pendix. A
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Figure 3.4: The desired trajectory computed by TOWR (dashed line) and the
measured positions (full line). In the top-right picture, measured trajectory is
smoother than the desired one when the pitch angle is evened. In bottom-left
picture, initial velocity of base is blended between transitions.
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Figure 3.5: The desired contact forces computed by TOWR (dashed line) and the
measured contact forces (full line). MPC-feedback controller is able to track the
contact forces as well.

Figure 3.6: The desired wheel position and the measured wheel position in the
z-direction for different motions. Measured swing height is always close to 10 cm
while the desired one is relatively flexible depending on the motion.
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3.4 Hardware Experiment

We conducted experimental tests on different gait motions. Fig. 3.7 and 3.8 show
snapshots of the robot conducting pace curve and gap gait. The robot is able
to track these trajectories despite the difficulty. The robot sometimes don’t have
enough power due to hardware limitations, but basically, it proves the correctness
of our MPC-feedback TO algorithm.

Fig. 3.9 shows some unexpected situation of the gap motion. The base has a drift
in the y-direction and the roll and yaw angle show some strange behaviors. While
the robot basically tracks the motion as shown in Fig. 3.8, we also analyze the
reason why such an error would happen.

Fig. 3.10 gives us some insights. When the front legs were in the air, the right hind
leg had an average force of 153N in a 0.8 seconds window while the left hind wheel
had 139N , therefore the robot was pushed towards the positive y-direction. On the
other hand, when the hind legs were in the air, the left front wheel had an average
262N contact force while the right front wheel had 99N , then it pushed the robot
back. This explains the drift as well as the behavior of yaw and roll angles. Fig.
3.10 also shows that the mass we used for computing the trajectory was half of the
true value. While it would introduce some errors, it won’t make much difference for
the following reason:

• TOWR trajectory is dependent on how we impose constraints. Fig. A.6 shows
an example when we take less strict feasibility checks. Under a 0.04-second
check step, this trajectory was feasible. However, it was not the case if we
pick more checkpoints. The trajectory serves as guidance and the resulting
optimized trajectory doesn’t necessarily align with that, especially when we
relax the feasibility constraints.

Figure 3.7: Snapshots of the robot conducting a pace curve motion. It was able
to track the desired trajectory. When the wheel attached the ground from the air,
it would suddenly increase the torque and sometimes overreach the maximum the
drive could achieve.

3.5 Tracking Performance

We define the tracking error as the mean Euclidean distance between the desired
trajectory and the measured trajectory along the whole time period. We exclude
the drift in y direction for the hardware experiment trot forward as this was mainly
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Figure 3.8: Snapshots of the robot conducting a gap jumping motion. A slight drift
towards positive y direction can be observed; the robot turned to its left a bit and
then turned back.

Figure 3.9: The desired trajectory computed by TOWR (dashed line) and the
measured positions (full line). In the top-left picture, the base position has an
unexpected drift in y direction; Its base orientation also behaves strangely in yaw
angle and roll angle.
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Figure 3.10: Comparison in contact forces for the gap experiment. The desired
contact force is generally below the measured force as the mass we used in TOWR
was off the true value. When the front legs are in the air, the right hind leg has
a bigger contact force and pushes the robot towards the positive y-direction; when
the hind legs are in the air, the left front leg has bigger power and pushes the robot
back.
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due to hardware problems as can be seen from Fig. A.5. The tracking performance
is summarized in Tab. 3.1

Mean Euclidean Distance [m]
Gap (real robot) 0.0862
Trot (real robot) 0.0642

Trot curve (real robot) 0.1759
Gap 0.0600

Pace forward 0.0749
Overlap walk curve 0.0588

Trot forward 0.0717

Table 3.1: Tracking Performance of Motions (Base)

3.6 Discussion

In the experiment, we elaborate on the tracking performance when equipped with
MPC-feedback controller. We top this feedback onto a low-level controller and it
is still unclear if the WBC alone will have the same performance. The WBC runs
at a high frequency of 400 Hz and MPC’s frequency is 20 Hz. One resulting issue
is that we need to feed the desired control plan of MPC to WBC a couple of times
until a new control plan is generated.

When we skip the MPC part and feed the generated trajectory from TOWR directly
to WBC, the story is different. There are some more concerns about the trajectory:

Feasibility check

WBC assumes the given trajectory is feasible. In other words, if the trajectory is
not feasible, then WBC will also try to track this false trajectory, which will lead
to instability. This factor imposes a higher accuracy requirement for the feasibility
of the trajectory. For TOWR, this means we need to check the feasibility of more
time steps and this will highly increase the computational time.

Smoothness

Fig. 3.11 depicts the comparison between desired and measured contact forces when
we use TOWR and WBC without MPC feedback. There are more peaks and the
change between transitions is sudden and abrupt. The attached video also shows
the movement is stiff and looks like falling anytime.

Tracking performance

Because WBC can’t measure the unexpected noise and disturbance from the real
model, it behaves some drift when the robot is moving. In this specific case,
the tracking error is 0.1308m while this can be decreased to 0.0717m if MPC is
equipped.
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Figure 3.11: Comparison in contact forces for the trot simulation with TOWR and
WBC. The measured contact force behaves abruptly between transitions and results
in the robot motion stiff. WBC also doesn’t take into consideration the perturbed
noise and therefore there is drift in the lateral direction as can be seen from the
attached video.
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Outcomes

4.1 Conclusion

In this thesis, we proposed to bridge the offline TO and MPC-feedback controller to
generate highly dynamics, hybrid motions on a wheeled-legged robot. This frame-
work is built on the top of a WBC and we verified our framework both on simulation
and hardware experiments.

This thesis shows the great potential MPC-feedback trajectory optimization has in
various tough tasks. We verified on the flat ground, gap ground with various hybrid
motions. We also generated a discontinuous walking-over stair trajectory which
is ready to be tested on the MPC framework. Introducing MPC-feedback would
blend between transitions and smooths the trajectory, which in turn corrects the
feasibility of the trajectory. MPC also handles disturbance in parameters and real-
world noise and guarantees high performance in tracking. With MPC equipped, a
theoretically infeasible trajectory could also be fed into controllers and has a great
opportunity for successful tracking. The possibility of a more natural way to merge
TO and MPC and make the whole trajectory optimization and tracking process
more integrated is being raised in this thesis.

4.2 Outlook

As mentioned above, looking into the future excites lots of possibilities and chal-
lenges. There are also immediate improvements that can be done on short notice.

Follow-up experiments

As shown in Chapter. 3. Some hardware experiments experienced issues and don’t
output ideal results. A new drive is expected to equip the wheel and some more
experiments should be done for various motions to get more valid results.

Incorporating terrain information in MPC

Currently, we used a flat ground for all motions in MPC, and a more complex
terrain is expected to be overcome in the future. Discontinuous stair needs to be
convexitized in order that an MPC problem can be solved efficiently.

19
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Trajectory relaxation

Here trajectory relaxation refers to the relatively relaxed constraints imposed to
check the feasibility of the trajectory. We have shown that some trajectories that
are not theoretically feasible can also be used as guidance for MPC. After MPC’s
correction, an optimized trajectory would be generated. This can be a potential
direction to achieve online trajectory optimization and tracking. A similar con-
cept also appears in [18] where trajectory relaxation is used to compute inverse
kinematics efficiently.

Learning based TO

If a trajectory relaxation is accepted, then learning-based TO would be a candi-
date for new optimizers because of its natural early stopping feature and domain-
dependent framework.
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Appendix A

Experiment Plots

A.1 Simulation plots

Figure A.1: Overlap walk curve: trajectory

23
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Figure A.2: Overlap walk curve: contact force

Figure A.3: Pace forward: trajectory



25 A.2. Hardware plots

Figure A.4: Pace forward: contact force

A.2 Hardware plots

Figure A.5: Trot forward (hardware): trajectory
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Figure A.6: Trot forward (hardware): contact force

Figure A.7: Trot curve (hardware): trajectory



27 A.2. Hardware plots

Figure A.8: Trot curve (hardware): contact force
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Appendix B

Listings

B.1 Video listings

All videos used in this thesis are hosted at: https://1drv.ms/f/s!AnVR8jEfSpl0hKoEBfgQNpr73CChEQ

B.2 Plotting code

Plotting matlab files are stored at: https://1drv.ms/u/s!AnVR8jEfSpl0hKoOwBOjE94QhbfxrA?e=Yh9A1D

B.3 Trajectory bag file

Sample trajectories are stored at: https://bitbucket.org/leggedrobotics/ocs2 to/src/master/
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