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Summary of the Survey
In this survey, I want to summarize approaches in robot navigation and robot learning. The survey mainly intro-

duced Markov Decision Process based methods including some variants including partially observable Markov Deci-
sion Process, Bayesian learning based POMDP, model predictive control approach and KL divergence upper bound
based POMDP. Besides applying other cutting-edge machine learning and deep learning methods, we can also make
use of other control methods such model predictive control in robot learning problems.

Markov Decision Process
The robot has to remember something about its history of actions and observations and use this information, to-

gether with its knowledge of the underlying dynamics of the world including the given map, to maintain an estimate
of its location. Markov Decision is a discrete-time stochastic control process and can serve as a mathematical frame-
work in situations where outcomes are partly random and partly under the control of the decision maker. The decision
maker’s decision can result in the change of its surrounding environments. Robotics is such a field where the robot is
involved in the environment. In Markov Decision Process, an agent will interact with the world directly. The agent
takes the state of the world as its input, and generate action as its output, which will affect the state of the outside
world. One seemly strong assumption is that the state of the world and the robot itself is known all the time. This is the
main difference with Partially Observable Markov Decision Process, and we will address it later. A Markov decision
process can be described as a tuple < S,A,T,R > [1], where:

• S is a finite set of states of the world;

• A is a finite set of actions;

• T is the state-transition function, mapping from S× A to the policy Π(s). and we can write as T(s,a,s’), where s’
is the resulting state after the previous state s and the action a. The s’ and s are essentially belonging to the same
set.

• R is a reward function, mapping from S and A to a real value. It measures the immediate reward after the action.

The goal is to minimize the expected sum of rewards in the next k steps. In some cases, we will consider infinite steps
with a discount rate γ . In the finite step cases, the action should not be independent of the time step. We denote Vπ,t(s)
as the expected reward obtained from the state s and taking the policy π for the tth step. Then the expected reward can
be described as:

vπ,t(s) = R(s,πt(s))+ γ ∑
s′∈S

T(s,πt(s),s′)Vπ,t−1(s′) (1)

In many cases, we need to find the optimal policy given a value function. Strictly, it only makes sense to do it in
infinite-horizon case. A whole sequence of value functions are needed to derive the policy for the finite horizon. We
can apply a greedy strategy to obtain the policy in both two cases:

πt(s) = argmax
a

(R(s,a)+ γ ∑
s′∈S

T(s,a,s′)Vπt−1,t−1(s′) (2)
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Partial Observable Markov Decision Process
For MDP problems, we assume the current state of the world and the agent are known to the agent. However,

what if the agent cannot determine the current state with full confidence? One possible approach is to choose the
action with the highest possibility, but this means the agent will do the same thing as it encounters a similar location.
It seems not a convincing approach. We can add some randomness to the agents’ action, which means, the policy
for the agent can be a distribution over actions mapping from observations. Therefore, if we are going to provide a
probability distribution over actions, we need to memorize previous actions as well as observations. Apart from the
tuple < S,A,T,R > described above, we need to introduce two more elements:

• Ω is a finite set of observations the agent can experience;

• O: S×A→ Π(Ω) is the observation function, which gives a possibility distribution over possible observations.
we can write as O(s’,a,o) for the probability of observation o, where s’ is the resulting state and a is the action.

we can divide the problem of controlling a POMDP into two parts; the agent has to make observations and generate
actions, as shown in Fig. 1. The agent has an internal belief b, which represents the agents’ experience. Based on the
belief, the agent will generate action. The belief is a function of the previous belief, observation, and past action.
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Figure 1: The process of POMDP: the state estimator is introduced, it makes use of the information of previous actions
and belief, as well as the observation at the current time step.

0.1 Belief formulation
Just like the observation, which is not a deterministic variable, the belief is also a probability distribution over states.

The distribution reflects the subjection about making decisions, which makes the robots more anthropomorphic. What’s
more, through the formation of belief, we can imagine a belief with possibility distribution comprises information about
agent’s historical experiences.

As a belief is a probability distribution over state S, we let b(s) represent the probability of world state s in agent’s
belief. Then they have to meet the requirement:

∑
s∈S

b(s) = 1 (3)

where all probabilities are no less than 0 and no bigger than 1. The new belief b’ then must be computed by the state
estimator (SE), given an old belief b, an action a and an observation o. The new belief b’ can be expressed as follows:
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b′(s′) = P(s′|a,b,o)

=
P(o|s′,a,b)P(s′|a,b)

P(o|a,b)

=
P(o|s′,a,b)∑s∈S P(s′|a,b,s)P(s|a,b)

P(o|a,b)

=
O(s′,a,o)∑s∈S T (s,a,s′)b(s)

P(o|a,b)

(4)

Notice that the observation o is not relevant to the observation and the old belief is not relevant to action to be taken in
the next step.

0.2 Policy formulation
If the agent only has one step to go, then the decision is easy. The agent has to maximize the reward it will obtain. If

the agent has two steps to go, it can take an action, and then make an observation, then take another action. In general,
if the agent has t steps to go, then the whole process can be drawn like a tree. The initial step can be seen as a parent,
and it has k observations (k sons). Each son will have an action, based on the observation and previous information,
and each son will have k grandsons, too. The expected reward for the final step (a single step) is:

Vp(s) = R(s,a(p)) (5)

The p denotes the policy tree node. A more general expression for a t step tree is that:

Vp(s) = R(s,a(p))+ γ ∑
s′∈S

T (s,a,s′) ∑
oi∈Ω

O(s′,a(p),oi)Voi(p)(s
′) (6)

Because the agent would never know the exact state of the world, it is more meaningful to take an expectation over all
possible states:

Vp(b) = ∑
s∈S

b(s)Vp(s) (7)

So the question becomes to find the policy tree that the reward will be maximized. One useful approach to solving this
problem is the witness algorithm, whose main idea is to choose an action among all possible actions to maximize the
reward. If we denote Vp(b) as the optimal reward function at the t step tree and denote Qa

p(b) as the reward after taking
an action in belief b and continuing optimally for t-1 steps, then we will have following formula:

Qa
t (b) = ∑

s∈S
b(s)R(s,a)+ γ ∑

o∈Ω

P(o|a,b)Vt−1(b′0) (8)

where b′0 is the belief state resulting from taking action a and observation o from belief b. Thus we have:

b′0 = SE(a,b,o) (9)

The next step is to find a best action a among all possible actions, which means:

Vt(b) = max
a

Qa
t (b) (10)

Like in the Markov Decision Process case, we need to generate action policies given value functions.

at(b) = argmax
a

(∑
s∈S

b(s)R(s,a)+ γ ∑
o∈Ω

P(o|a,b)Vt−1(b′0)) (11)
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0.3 Combine Bayesian learning and POMDP
This methodology bridges the machine learning and POMDP in that it introduces the collision probability and

divides the expected reward into two parts: one is relative to the collision, and the other part is not. However, to
accurately model the collision distribution over real world is super difficult, and this method uses machine learning
to gain the knowledge of collision distribution from training data, which implicitly captures the relevant traits of our
training environment rather than to model the map distribution directly.

One major missing element of the POMDP is that it cannot provide an initial belief over the world states. Here we
will use the distribution of probability over the collision and update it using Bayesian learning. We first rewrite (11)
and (6) as:

at(b) = argmax
a

(∑
s∈S

b(s)R(s,a)+ γ ∑
s∈S

b(s) ∑
s′∈S

T (s,a,s′) ∑
oi∈Ω

O(s′,a,o′)Voi(p)(s
′))

= argmax
a

(∑
s∈S

b(s)R(s,a)+ γ ∑
o∈Ω

P(o|a,b)Vt−1(b′0))

= argmax
a

(∑
s∈S

b(s)R(s,a)+ γ ∑
s′∈S

P(s′|b,a)Vt−1(s′))

(12)

The reward term Vt(s) or Vt(b) (they are essentially the same as can be seen from (7)) can be divided into two parts:
one can be seen as a function of time spent to describe the efficiency of the robot, and the other one is a collision check
function which describes the safety of the current action. [4]

V (s) =V ∗(s)+ Jc× ICS(s) (13)

where ICS(s) equals 1 if the collision is inevitable.
Therefore, the action policy can be rewritten as:

at(b) = argmax
a

(∑
s∈S

b(s)R(s,a)+ γ(∑
s′∈S

P(s′|b,a)V ∗t−1(s
′)+ ∑

s′∈S
P(s′|b,a)Jc× ICS(s))) (14)

For the reward regarding to time spent, we can use a simple heuristic function to approximate it:

h(at ,bt)≈ ∑
s′∈S

P(s′|b,a)V ∗t−1(s
′) (15)

and the term regarding to collision is approximated by machine learning methods:

f (φ(at ,bt))≈ ∑
s′∈S

P(s′|b,a)Jc× ICS(s) (16)

To predict collision probabilities, we need to collect training data D = (φ1,y1), ...,(φN ,yN) Here we introduce the yi
as the resulting binary collision state(’collision’,’non-collision’). The goal is to learn the function f (φ). The update
process is based on a Bayesian inference model.

0.4 Model predictive control approach
The model predictive control problems can be formulated as minimizing the sum of expected loss in infinite hori-

zons.

J∗0→∞ = min
u0,u1,...

∞

∑
k=0

h(xk,uk)

s.t. xk+1 = f (xk,uk),∀k ≥ 0
x0 = xS,

xk ∈ X,uk ∈ U,∀k ≥ 0

(17)

where x and u are system state and input, respectively. f is the update process which represents the dynamic of the
system. X and U are state space and input space. xS is the initial state and h(xk,uk) is the corresponding loss at the state
xk after an action uk is made. However, basing actions on the model predictions introduces issues with robustness due
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to the fact that the model is inherently inaccurate, and thus predictions further in the future are more uncertain. So in
practice, we will not deal with it in infinite cases, but compute the loss within certain steps.

J∗t→t+N = min
ut ,...,ut+N−1

t+N−1

∑
k=t

h(xk,uk)+V (xN)

s.t. xk+1 = f (xk,uk),∀k ∈ [t, t +1, ..., t +N−1]
x0 = xS,

xk ∈ X,uk ∈ U,∀k ∈ [t, t +1, ..., t +N−1]

(18)

The function V (xN) represents the expectation of future rewards after step N. We call this as the value function. Initially,
the value function has lots of uncertainty, but as step increases, the uncertainty will decrease. We propose that when the
uncertainty is large, we use the action policy obtained from model predictive control framework, but when uncertainty
reaches below a predefined threshold, we utilize Markov Decision Process solutions regarding the value function. Thus
the problem of the unknown initial probability distribution can be solved.[3]

The optimization problems in model predictive control can be solved using general solution techniques such as
linear programming, quadratic programming, etc. The solution to this problem is a sequence of actions. We perform
the first action and update the current state. Then move the current step to the next, and repeat the previous steps.

The value function contains information about the model and the world implicitly. The recursive relationship
regarding the value function can be described as:

V ∗(xk0) = ∑
u∈U

P(u|xk0)×

(
h(xk0 ,u)+ γ ∑

x′
P(x′|xk,a)V (x′)

)
(19)

where P(u|xk0) denotes the probability that the policy select the input/action u in state xk0 .

0.5 PAC-Bayes Control
One assume in the previous analysis is that we have enough data to train our model and obtain a validate belief.

However, in the robotics field, the dataset is quite small compared to other machine learning targets, like picture
classification. So the problem is how to build a controller which generalize well on novel environments. We let ε

denotes the possible environments which can be observed. We assume that there is a distribution D over all possible
environments which cannot be observed. In this method, the unknown feature of D is emphasized because we focus on
the controller dealing with unknown novel environments.

The data set from E consists of our training data, and we will figure out the difference and relationship with the
parameter derived from the dataset and those from the unknown environment D. The technique used in this process is
KL divergence in PAC-Bayes framework.

0.5.1 KL divergence

In mathematical statistics, the Kullback-Leibler (KL) divergence is a measure of how one probability distribution
is different from a second, reference probability distribution. Given two discrete distribution P and Q defined on a
common set, the KL divergence between P and Q is:

KL(P||Q) = ∑
i

P[i]log(
P[i]
Q[i]

) (20)

For scalars p,q∈ [0,1], the KL divergence can be defined as:

KL(p||q) = KL(B(p)||B(q)) = p log
p
q
+(1− p) log

1− p
1−q

(21)

where B(x) denotes the Bernoulli distribution on 0,1 with parameter x. On this basis, we can compute a bound scalar
q∗ regarding to p with a KL divergence smaller than a given constant c.

q∗ ≤ KL−1(p||c) = sup{q ∈ [0,1]|KL(p||q)≤ c} (22)
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0.5.2 PAC-Bayes controller formulation

We denote l(hw,z) as a loss function regarding to the given observed environment and the hypothesis function
parameterized by w. We focus on the probability distribution of the agent belief over parameter w, there is a reward
(loss) corresponding to this believed distribution denoted as VS(P)

VS(P) = Ez∈EEw∼Pl(hw;z) (23)

and a loss corresponding to the true unknown distribution denoted as VD(P):

VD(P) = Ez∈DEw∼Pl(hw;z) (24)

We choose a prior distribution Then the PAC-bound can be shown as follows:

KL(VS(P)||VD(P))≤
KL(P||P0)+ log(

2
√

N
δ

)

N
(25)

where N is the number of data samples in the training environment and δ is a positive scalar smaller then one, which
denotes the probability. Therefore, we can obtain an upper bound for the loss under true distribution:

VD(P)≤ KL−1

VS(P)||
KL(P||P0)+ log(

2
√

N
δ

)

N

 (26)

Another KL divergence equation easier for optimization is:

VD(P)≤VS(P)+

√√√√KL(P||P0)+ log(
2
√

N
δ

)

2N
(27)

and the second term can be regarded as a regularizer. We can choose the distribution of P by minimizing the right part
of the inequality.[2]
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