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Abstract

Autonomous navigation is one of the most fundamental
problems in robotics. Most existing works use RGB cameras
to perceive the environment, build a map, plan a trajectory,
and track it with a controller. In this work, we propose a
novel pipeline for autonomous navigation that leverages the
stream from a single event camera, a bio-inspired sensor
that captures pixel-level brightness changes at microsec-
ond resolution. We present an end-to-end planner that takes
these events as input and predicts a collision-free trajectory,
which is then tracked by a model predictive controller. The
training data is entirely collected in simulation; we utilize
imitation learning to distill the knowledge of an artificial
expert to a network policy. We show that our pipeline works
with a perceptual latency of only 1ms. The trained planner
can be transferred zero-shot to a real quadrotor that is able
to plan complex trajectories based on only a single event
camera. The proposed approach achieves superior perfor-
mance compared with image-based alternatives, reducing
the perceptual latency by up to 30 times, opening up new
applications for safe agile robotics.

1. Introduction
Autonomous robot navigation has made tremendous

strides over the past years. Removing the need for humans
to tele-operate, monitor, or manually intervene will unlock
massive applications in industry. While most existing works
use RGB cameras to perceive the environment, the percep-
tion latency is the limiting factor to increase the agility (and
thus the productivity) of autonomous mobile robots. Stan-
dard cameras indeed suffer from a bandwidth-latency trade-
off : at high speeds, they require a high frame rate to reduce
perceptual latency, but this introduces a significant band-
width overhead for computationally-constrained robots; re-
ducing the frame rate reduces the bandwidth requirements
but at the cost of missing important scene dynamics (thus re-
ducing the safety and agility of the system) due to increased
perceptual latency. Besides, RGB cameras also suffer from
motion blur at high speeds in dimly lit environments.

Event cameras are novel, bio-inspired vision sensors

Figure 1. A novel pipeline for autonomous navigation using only
the data stream from a single event camera. The image shows an
event visualization of the perceived forest environment.

that have a different working principle than standard cam-
eras. Instead of capturing images at a fixed rate, event
cameras output per-pixel brightness changes at microsec-
ond resolution and have appealing properties including sub-
millisecond latency, high dynamic range, no motion blur,
and low energy consumption. These properties are ideal to
reduce the perceptual latency of a robotic system and, thus,
achieve increased safety in high-speed scenarios, like the
one in Fig. 1. For further details about event cameras, we
refer the reader to [20]. In this work, we exploit event cam-
eras for autonomous navigation of quadrotors (i.e., quad-
copter drones).

Traditional methods tackle the navigation problem by
separating the pipeline into perception, planning, and con-
trol modules [19, 66]: the robot first extracts appropriate
perception abstractions (e.g., an estimate of the robot po-
sition, velocity, and orientation plus a local map), reasons
about them, then plans a collision-free trajectory, and finally
computes the control commands to execute this trajectory.
This modularity enables the overall interpretability of the
system. However, the sequential components add extra la-
tency, making high speed navigation more challenging [16].

Learning-based approaches have recently been used to
directly map the perception information to control outputs

1



Method Sensor Resolution Visual Abstraction Perception Latency (ms)
Sensor Processing Total

(a) FastPlanner [66] [64] LiDAR - 3D map - - 100
(b) Reactive [19] [36] Depth sensor [160,120] pointcloud 33.3 13.8 47.1
(c) High-speed Planner [36] RGB camera [640,480] SGM depth 33.3 2.74 36.0
(d) RECON [56] RGB camera [160,120] image 33.3 0 33.3
(e) Ours Event camera [640,480] Event tensor 1.00 1.79 2.79

Table 1. Comparison of different vision-based navigation approaches. Entries with - indicate not available or not applicable. For the
column of perception latency, we report the time required for each visual abstraction to be generated, therefore including the sensor latency
and the processing latency. For the RGB camera and depth sensor, the sensor latency depends on the actual hardware. Take RealSense
D415 as an example, the RGB frame rate is 30 Hz and the depth sensor rate up to 90 Hz. Conversely, our approach, which takes only raw
events as input and processes them into an event tensor, consumes only around 2.79ms per update.

[36, 39, 51, 52, 56]. By leveraging deep networks, the plan-
ner has been shown to achieve better generalization abili-
ties than traditional methods and can be released zero-shot
in the wild [36]. Learning-based methods are usually data-
hungry. However, collecting data from the real world may
cause damage to the robotic platform and takes months or
even years of manual annotations [56, 57]. To mitigate this
issue, other works use synthetic data [36,38,52]. The policy
is purely trained in simulation, but needs to be deployed in
the real world. This boils down to learning an effective rep-
resentation of the observation such that the distribution shift
from simulation to reality can be well mitigated. These re-
quirements, along with a constrained computation resource
onboard, pose major challenges for autonomous navigation.

While there exist numerous papers and datasets on the
use of standard RGB cameras or depth sensors for down-
stream robotics tasks [19,36,39,51,52,56,57,66], research
on robot navigation using event cameras is limited. RGB
cameras are still the main perception modality and the per-
ception latency is limited by the nature of the frame-based
sensor. For example, the RealSense D415 perceives the
environment at 30 Hz, while an event camera can provide
updates up to thousands Hz [20]. So far, the use of event
cameras in mobile robotics has been demonstrated in high-
speed state estimation [62] or dodging fast moving objects
with quadrotors [17, 53]. However, utilizing event cameras
for autonomous navigation in the wild remains unexplored.

To approach this problem, we propose a novel pipeline
for autonomous navigation that leverages the data stream
from a single event camera. The policy is trained purely
in simulation and transferred zero-shot to the real world.
We utilize Imitation Learning (IL) [44] to train the navi-
gation policy: the demonstrations are collision-free trajec-
tories with given boundary conditions; the policy takes a
stream of events and directly predicts the trajectory in terms
of way points. The trajectory is then executed by an optimal
controller to increase the generalizability of the system. In
addition, we further study the importance of different com-
ponents for training a successful quadrotor navigation plan-

ner. Our findings show that state information (i.e., an iner-
tial sensor) is not necessary for predicting a collision-free
trajectory, and a 1ms time window of events from a single
event camera is sufficient to plan the trajectory.

Contributions: In summary, we develop the first end-
to-end approach that utilizes a single event camera and pre-
dicts collision-free trajectories for agile quadrotor naviga-
tion. The proposed approach achieves superior performance
compared with frame-based alternatives, greatly reducing
the perception latency by up to 30 times. This opens up the
potential of event cameras being used in other high-speed,
safety-critical robotic tasks such as autonomous driving. In
addition, we implement a series of ablation experiments and
evaluate different modalities for perception-based naviga-
tion, and create a common benchmark for navigation tasks.

2. Related Work
2.1. Visual Navigation

Modularized System. Traditional methods separate visual
navigation into perception, planning, and control modules
[3,12,19,54,66]. Zhou et al. [66] built an environment map
from the perceived point cloud and solved an optimization
problem for safe path planning. Florence et al. [19] forgo
building the map and propose to operate directly on the lat-
est depth information for planning, therefore reducing the
latency by a large margin. However, a sequential pipeline
still neglects the interactions between different components
and errors compound [65].
Data-driven Approaches. Recent works in vision-based
navigation include many learning-based approaches [8, 9,
27,36,39,51,51,52,56]. These approaches directly map the
visual observation to the control output. Among them Imi-
tation Learning (IL) [44] and Reinforcement Learning (RL)
[60] are the two main paradigms. IL learns the planner from
expert demonstrations such as human experts [39,51], sam-
plers [36,55], and privileged teacher networks [8], while RL
encodes the navigation problem as a Markov Decision Pro-
cess (MDP) and guides the agent with task-specific rewards
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[9, 52, 56]. Meng et al. [39] use a few demonstrations to
build the environment map and encode the visual observa-
tion to a latent space, the robot navigates through targeting
the most similar demonstrated image as waypoints. Simi-
lar to our work, Loquercio et al. [36] proposed to learn the
visual navigation planner by imitating a Monto-Carlo sam-
pler sampling from a global collision-free trajectory. We
simplify the network by removing the state and replacing
the traditional vision sensor with an event camera, reducing
the perception latency by a huge margin.

Some works collect training data directly in the real
world [56, 57]. Shah et al. [56] proposed to navigate by
exploring the environment and building the map simultane-
ously, using a goal-conditioned latent model, training with
large scale offline real world data. The dataset is extended in
[57], and a general navigation model is trained by combin-
ing datasets from different platforms. However, all above
mentioned method use RGB or depth images as visual in-
formation. Tab. 1 compares the sensors and latency of dif-
ferent approaches. In our work, we use an event camera and
imitation learning to tackle the navigation problem.

2.2. Event-based Vision

Event Representation. Events are usually transformed to
intermediate representations to facilitate the feature learn-
ing from events. Alternative representations include time
surface [1, 33, 37], voxel grid [2, 61, 63] and reconstructed
images [50]. We refer to [20] for more details. In this work,
we utilize the voxel grid representation to sum up posi-
tive and negative event polarities; we construct a 3-channel
event tensor by adding event count as third channel.

Event-based Depth Estimation. Depth as an intermediate
representation is important for robotics applications [7,67].
Works in depth prediction with event cameras have experi-
enced a surge in past years, both in the optimization-based
domain [31, 46, 48, 49, 68, 69] and the deep learning do-
main [26, 71]. Zhu et al. [71] encoded the events with a
spatial-temporal voxel grid and learned the motion informa-
tion from an unsupervised fashion. Hidalgo et al. [26] used
a monocular event camera to predict the depth and used both
synthetic and real data for training. However, we show in
the experiments that depth is not necessary for training a
navigation policy. We leverage the data stream from a single
event camera and train the planner directly from the event
tensor without having an intermediate depth map.

Datasets. Compared with abundant image datasets,
datasets based on event cameras are scarce. Available
datasets include [10, 13, 18, 23, 30, 45, 58, 70]. Among them
Zhu et al. [70] proposed the first dataset with synchronized
stereo event cameras, with accurate ground truth depth and
pose. Gehrig et al. [23] address the need for large scale out-
door stereo event camera datasets. However, datasets for
autonomous navigation with event cameras do not yet exist.

In our work, we resort to simulation to create the navigation
dataset; we will publicly release it upon acceptance. We
render high temporal resolution video in Flightmare [59]
and use ESIM [47] to simulate events.
Event Camera for Robotics. Event cameras have recently
attracted attention in the robotics community [20]. Early
works using events for robotics focus on low-dimensional
tasks [4, 6, 11, 14, 15, 21, 24, 25, 40, 41, 43]. Event cameras
have also been demonstrated in more complex robotics plat-
forms [17, 42, 53, 62]. Evasive maneuvers with quadrotors
are presented in [17, 42, 53] with the help of event cam-
eras. To dodge fast moving obstacles with event cameras,
Falanga et al. [17] proposed to segment the moving ob-
stacles from a single stream of events and fly the quadro-
tor into a collision-free direction. Along the same line of
work, Sanket et al. [53] leveraged deep learning to esti-
mate the ego-motion, optical flow and segmentation simul-
taneously. Our work extends the usage of event cameras
to autonomous navigation and utilizes neural networks for
achieving collision-free planning.

3. Method
An overview of our approach is shown in Fig. 2. The

main building block of our method is a visual planner, a
neural network that takes as input perceptual data coming
from a sensing device, in our case a monocular event-based
camera, and directly outputs waypoint positions, while also
avoiding potential collisions with obstacles in the way. Con-
trary to previous work, our method does not predict in-
termediate representations, such as a depth map, a feature
which we empirically validate in Sec. 4.3 where we show
that it provides the best tradeoff between accuracy and la-
tency. Such an end-to-end planner, combined with the low
perceptual latency of the event-based camera, reduces the
processing latency and enables agile navigation by shorten-
ing the reaction time. We present the detailed components
of our approach in the following sections.

3.1. Visual Planner
The visual planner Φ takes observations X as input and

outputs a sequence of waypoints T ∈ RN×3. These way-
points are expressed in the local body frame of the drone.
We write this input-output relation as

T = Φ(X ) (1)

While this formalism is general, and could be used for
any sensor modality, we focus here on using events from
a monocular event camera. Later in Sec. 4.3, we will
show that this sensor is actually sufficient for successful,
lightweight planning, without the need for other sensor
modalities such as depth D, images I or the drone state S.

Event cameras output a stream of events (ti, xi, yi, pi),
each consisting of time, position, and polarity. An event
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Figure 2. System Overview. During data collection, the privilege planner [35] has access to the ground truth point cloud of the environment
and can plan a global collision-free trajectory given a random command. From the collision-free trajectory, sequences of waypoints are
sampled and tracked by a Model Predictive Controller (MPC). The control command is sent to Flightmare [59]. In the data collection
phase, we collect high frequency images, ground truth depth map, quadrotor state, and the tracked waypoints to the training buffer. To
simulate events in Flightmare, we use ESIM [47]. The perception backbone is a pretrained MobileNet-V3 and the network is trained in a
supervised fashion to predict the waypoints.

is triggered at time ti if the brightness change at (xi, yi)
exceeds a threshold ±C, i.e. when,

pi[L(xi, ti)− L(xi, ti −∆ti)] > C (2)

The observations are sequence of raw events E = {ei}Ni=1.
Before ingesting events, we first map them to a dense
“image-like” representation, a practice which allows us
leverage existings powerful neural network architectures,
and pretraining. We opt for a dense grid-like representation,
due to its ease of use and high performance on down-stream
tasks [22, 71] with dimensions B × H × W × 3, where
B is the number of temporal bins and 3 are the per-pixel
features. The first two features are computed by assigning
events within a time window ∆T into B bins by:

E(x, y, t, p) =
∑
xi=x,
yi=y,
pi=p

pi max(0, 1− |t− t∗i |), (3)

where t∗i = B−1
∆T (ti − t0) is the normalized timestamp and

p ∈ {−1, 1}. We finally compute the third channel by com-
puting the total number of events within the time interval
∆T . We implement the planner as a MobileNet-V3 [29]
pretrained on ImageNet. We empirically show in Sec. 4.1
that such a simple solution is enough for planning trajec-
tories with remarkable obstacle avoidance performance and
high level of robustness to challenging motion and light-
ing conditions. Fig. 2(c) shows the visual planner that only
takes an event tensor as input.

3.2. Learning in simulation

To train the visual planner Φ, by forcing it to imitate an
expert planner. This planner is another algorithm that gen-
erates waypoints T but can do so with privileged informa-
tion. In our case, similar to [36] we base our expert on the
method in [35].

Expert and Training Setup. The expert optimizes for a
global collision-free trajectory TG given a boundary condi-
tion, and sends the trajectory to the Flightmare [59] simula-
tor. Flightmare uses the Unity Engine as its rendering back-
end and can generate images with high frequency. The data
collection is performed in a virtual forest environment with
a size of 100m by 100m and trees distributed according to a
Poisson distribution [5] with a minimum distance between
any two trees as 3 meters. A visualization of a collision-
free trajectory generated by the demonstrator is provided in
Fig. 3. These trajectories are collected in a training buffer
during a data collection phase, and then used in a later stage
to train the visual planner so that it learns to imitate the
privilege planner but without having access to global infor-
mation. We randomly spawn the expert quadrotor at the be-
ginning of the trajectory rollout, and set a random reference
direction. At each planning step tp, we sample 1 second
of waypoints Tg,exp ∈ RN×3 from the collision-free tra-
jectory TG and track the trajectory with the MPC. We send
the sampled waypoints to the MPC at 20 Hz and the low-
level controller runs at 100 Hz. We also log this trajectory
for later training the visual planner. In total, we collect data
from 300 trajectories, each lasting 6 seconds, resulting in 30
min of flight. Collection at 20 Hz results in 36’000 samples.

During rollout, we also collect the quadrotor’s current
state information, images, ground truth depth, and events
from a stereo camera with a field of view (FOV) of 90 de-
grees, tilt angle of 30 degrees, and a baseline of 10 cm. Each
training data sample si in the buffer thus has the following
elements: quadrotor state X , stereo images Il, Ir, ground
truth depth D, sampled waypoints T , and simulated events
El, Er.

Visual Planner. The visual planner does not have access
to the global pointcloud, and thus needs to be able to im-
itate the expert using only events. To enable this, we use
ESIM [47] to generate events from video with a high tem-
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Figure 3. Visualization of the training environment. On the left is the visualization of trajectory planned by the demonstrator [35]: the
planner has access to the ground truth point cloud and can plan a collision-free trajectory given the boundary conditions. On the right is a
camera image showing the density of the environment.

Quadrotor State 
(velocity, orientation, 
reference direction)

(depth, event tensor, image) 

Visual 
Planner

State 
Encoder

Waypoints

Figure 4. Architecture of the planner. Note that we use a dashed
line connecting the state source. We ablate on the state information
and show comparison in Sec. 4.

poral resolution. Using the collected labels Texp from the ex-
pert, we train the student to imitate those labels from events
alone, by minimizing the following objective:

θ∗ = argmin
θ

∑
i

∥T i
g,exp −RΦ(Ei)∥22, (4)

where i is a training sample index, and θ are the param-
eters of the visual planner neural network. The transform
R maps the trajectory output by our visual planner to the
global frame.

We train the planner using the Adam optimizer [32] with
a learning rate of 3 · 10−5, a batch size of 32 and without
data augmentation.

3.3. Model Predictive Control (MPC)

The sampled trajectory Tg is tracked by an model predic-
tive control (MPC). To compute the control command, the
MPC solves the following optimization problem in a reced-
ing horizon fashion:

minimize
u(·)

N−1∑
i=0

||xi − Tg,i||2R + ||ui||2Q, (5)

while satisfying system constraints. The variables xi and
ui are the quadrotor state and input at step i. The trajectory
Tg is either sampled from the global collision-free trajectory
TG, or predicted by the visual planner Tg = RΦ(E). The

sampled trajectory has a horizon of N = 10, with a total
duration 1 second. At each time step, the MPC computes a
sequence of actions [u(0),u(1), ...u(N − 1)], but only the
first command is executed.

4. Experimental Results

4.1. Simulation Experiments

To ablate the importance of different perception modali-
ties and planner states, we conduct a series of experiments.
For simplicity, we denote E as event representation, I as im-
age and S as quadrotor state. In this section, we aim to
answer the following question: Q1:What kind of perception
modality is most suitable for agile navigation? From this
we ask ourselves more specifically: Q1.1: Do we need a
stereo camera, e.g. depth information, for agile navigation?
Q1.2: Do we need state information for planning trajecto-
ries? Finally, we investigate the question: Q2: What’s the
optimal event window size and planner update frequency
to achieve the best planning performance? To investigate
these questions, we collect several sensors data in our sim-
ulator, including quadrotor state, depth maps, and images,
which is discussed next.

Test Setup. We evaluate the navigation task in an evaluation
environment in Flightmare with the same size as the training
environment, but with trees spawned following a Poisson
distribution [5] with density of σ = 25−1 tree m−2. During
rollout, initial position and orientation of the quadrotor are
randomly chosen and remain fixed for all experiments.

4.2. Metrics and Baselines.

Metrics. We pick 100 random starting points to fly the
quadrotor. A rollout is considered successful if the quadro-
tor flies forward 20 meters without crashing into a tree. We
report the success rate among all these attempts. Now we
list the baselines considered during the experiments.

Direct Baseline (DB): This baseline does not use a neural
network and blindly navigates the quadrotor straight, i.e.
along a constant reference direction.
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Method epe (px) valid % inference (ms)

(a) RS + E 0.47 99.8 39.6
(b) SGM + E 4.55 96.2 2.74
(c) SGM + I [36] 4.97 87.3 2.74
(d) SGM + E2VID [50] 3.98 11.5 -

Table 2. Deep network provides better depth estimation than
SGM. Depth estimation with different approaches and modali-
ties. The results are reported for inverse depth (disparity). In
the Method column, we denote E for events, I for images, RS for
RAFT-Stereo [34], E2VID for reconstructed images from events.
We report with RS + E if the disparity is estimated by RAFT-Stereo
and events. We use the standard evaluation matrix: end-point-error
(epe), and valid percentage of pixels that have positive disparity
prediction.

Blind Planner: The blind (B) planner represents the plan-
ner that is trained on images padded to zero, and the quadro-
tors state detailed in Fig. 4. It thus learns a minimum of
navigation capabilities from its own state.

Depth-based Planners: Computer vision can provide use-
ful intermediate representation for robotics [67] that can
help facilitate training the downstream policy [7]. Among
many intermediate representations, depth is one of the most
important ones. But is this also true when the perception
modality is events? To investigate the importance of depth
information, we introduce three baselines for getting depth
from the event camera: (i) ground truth (GT); (ii) our adap-
tation of RAFT-Stereo [34] (RS) that maps stereo events
to depth; (iii) semi-global matching [28] (SGM) that finds
matching features between the left and right event tensors.
For each one of these baselines, we train them once with
state (+S) and once without (no symbol). To make a bet-
ter comparison of these baselines, we additionally evaluate
them in their ability to reconstruct accurate depth, and re-
port these results in Tab. 2 and visualize them in Fig. 5. We
can see that there is a clear tradeoff between accuracy and
latency, both of which are crucial for successful navigation
in real-time.

Vision-based Planners: To get a comprehensive under-
standing of the informativeness of different perception
modalities for depth prediction, we compare two percep-
tion sources: event representation (Mono E) and RGB im-
age (Mono I). Again we differentiate between planners that
use state and do not use state with (+S).

4.3. Results

Accurate depth map does not improve the performance.
The detailed performances are shown in Tab. 3. In Tab. 3
we see that the success rate between modalities only ranges
between 0.67 (SGM+I+S) and 0.73 (GT+S). This indicates
that the perception modality does not have a major impact
on the behavior of the planner. We find that event-based

(a) Ground truth (b) RS [34] + event (c) E

(d) SGM [28] + I (e) SGM + E (f) SGM + E2VID [50]

Figure 5. Different Perception Modalities. We visualize different
depth information (a, b, d, e, f) and event representation (c). In
addition, we also include the RGB image as another modality in
our experiments. Notation: We denote E for events, I for images,
RS for RAFT-Stereo [34], E2VID for reconstructed images from
events. We report with RS + E if the disparity is estimated by
RAFT-Stereo and events.

visual inputs (Mono E+S) perform as well as ground truth
depth maps. We can see that the accuracy of the depth does
not play a major role, since highly accurate depth maps
from (RS+E+S) and less accurate depth from (SGM+E+S)
achieve the same success rate. Surprisingly, we find that
even changing the depth map method from RS to SGM only
has a minor impact on performance. We therefore conjec-
ture that depth is only used to a minor extent.

State information prevents the planner learning from
exteroception. To test this hypothesis we even remove the
depth information in the test environment (h) and find that
the performance only drops by 3%. This confirms our hy-
pothesis, and thus leads us to believe that the planner fo-
cuses primarily on the state to plan its trajectory. Since
the waypoints have a high correlation with the state, e.g.
quadrotor velocity, the planner tends to exploit the state and
ignores the perception information. However, this is unsus-
tainable especially in more complex environments, and we
thus want the planner to focus more on its visual inputs. We
therefore repeat the experiments in Tab. 3 without state, and
report those results in Tab. 4. In this setting we see that
our planner actually uses perception, because the planner
trained on (RS+E), when deprived of its inputs, experiences
a performance drop of 47.9%, from 73% to a very low suc-
cess rate of 38%. We find that this simple modification im-
proves the success rate of almost all baselines by between
1% to 5%.

Using events improves success rates over using images.
We also compare the difference between images and events.
Motivated by [36], we compare SGM on stereo cameras
for both images and events. Fig. 5 provides a visualiza-
tion comparing these two modalities. Comparing (f) and
(g) in Tab. 3 and Tab. 4 shows that using monocular events
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Abstraction Train Evaluate Success

(a)

depth

RS + E + S RS + E + S 0.71
(b) RS + E + S SGM + E + S 0.67
(c) SGM + E + S SGM + E + S 0.70
(d) SGM + I + S SGM + I + S 0.67
(e) GT + S GT + S 0.73

(f) event Mono E + S Mono E + S 0.73

(g) image Mono I + S Mono I + S 0.70

(h)
blind

RS + E + S B + S 0.68
(i) B + S B + S 0.66
(j) - DB + S 0.57

Table 3. Success rate for approaches trained with state infor-
mation. Notation: RS for RAFT-Stereo [34], E for events, S for
state, I for images, Mono for monocular, B for blind, DB for direct
baseline.

Abstraction Train Evaluate Success Improvement

(a)

depth

RS + E RS + E 0.73 0.02
(b) RS + E SGM + E 0.71 0.04
(c) SGM + E SGM + E 0.59 -0.11
(d) SGM + I SGM + I 0.72 0.05
(e) GT GT 0.77 0.04

(f) event Mono E Mono E 0.74 0.01

(g) image Mono I Mono I 0.60 -0.1

(h) blind RS + E B 0.38 -0.3
(i) - DB 0.57 0.00

Table 4. Success rate for approaches trained without state in-
formation. Notation: RS for RAFT-Stereo [34], E for events, I for
images, Mono for monocular, B for blind, DB for direct baseline.

gives a boost over using images directly. Especially, when
the state is not provided, our image-based planner degrades
by a full 14%. We conjecture that the motion information
in the events give the planner ample information to perform
well in the task of collision-free navigation, while images,
being static representation, do not carry this information.
Monocular events have low perception latency. To inves-
tigate the optimal event horizon and the effect of the plan-
ning frequency on the navigation performance, we conduct
ablation studies and show the results in Tab. 6. We vary the
horizon from 1ms to 30ms, and train the planner for each
setting. Fig. 7 visualizes the event representation with dif-
ferent horizons. We show that even a horizon of 1 ms events
is sufficient to fly the quadrotor with a success rate of 0.79!
Since the quadrotor flies at a speed of about 5 m/s, the fast
motion brings significant brightness change, and thus cre-
ates enough events even within a very short period of time.
Considering that the latency of a standard camera is usually
larger than 30 ms (see Tab. 5), our work shows the great po-
tential of event cameras for high-speed autonomous appli-
cations. In addition, we also show the generalization ability

Sensor Latency (ms)

(a) RealSense D415 RGB 33.3
(b) RealSense D415 Depth 33.3
(c) Prophesee Gen 3.1 1.0

Table 5. The event camera provides superior performance in
perception latency. The RealSense D415 camera updates RGB
frames at 30Hz, and updates depth at 30Hz and up to 90 Hz. The
event camera requires a horizon of only 1ms for the planner to
work.

Planning step (ms)
Horizon (ms) 10 30 50 100 1000

(a) 1 0.79 0.76 0.76 0.68 0.20
(b) 3 0.74 0.65 0.79 0.78 0.35
(c) 5 0.67 0.66 0.65 0.68 0.20
(d) 10 0.73 0.73 0.69 0.73 0.15
(e) 30 0.77 0.73 0.74 0.72 0.36

Table 6. Ablation study on event stream horizon and planner
update rate. The fast motion of quadrotor brings enough events
even within a very short period of time. When the planning fre-
quency is very low (1Hz), the performance drops significantly.
Note that the horizon MPC needs is 1.0 seconds, having a very
slow planning rate results in inconsistent tracking for MPC, thus
resulting performance degeneration.

Horizon (ms) 1 3 5 10 20 30

Success 0.7 0.67 0.63 0.63 0.74 0.71

Table 7. Generalization ability with different event horizon.
The planner is trained with horizon 20ms, but evaluated under
different horizons. The performance does not degrade too much
while having different horizons.

of the planner when evaluating with different densities of
events. Tab. 7 shows that the learned planner is robust to
different horizon of events. As a visual demonstration, we
show in Fig. 6 a successful closed-loop rollout in simula-
tion. The quadrotor plans a trajectory through some trees
correctly and finishes the rollout successfully. In addition,
using the images often leads to larger sim-to-real gap [36]
due to a larger domain shift.

4.4. Real-World Experiments

Real-world planning. We use a monocular Prophesee
Gen3.1, and collect sequences of events in the real world
to show that our approach can bridge the sim-to-real gap.
Due to the lack of ground truth, we define a planned trajec-
tory as successful if the predicted trajectory aligns with the
collision-free direction. For example, if the tree is on the
left and the planned trajectory leans towards the right, that
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Figure 6. Illustration of a successful closed-loop flying with a monocular event camera in simulation. From top to bottom are event tensor,
RGB image, and the ground truth depth observed at different time steps. Note that only the events are used for the planner. To indicate the
flying progress, we denote two trees by red letters A and B. At t = 0, tree A is in the straight line front of the quadrotor, flying straight
will lead to a collision. The learned planner predicts trajectories that turn towards the right, and the quadrotor successfully fly through the
space between tree A and tree B. (red, in top row)

Figure 7. Visualization of event representation with different hori-
zons. Top to bottom, left to right: 1ms, 3ms, 5ms, 10ms, 20ms,
30ms.

would be considered a successful plan. As shown in Fig. 8,
the predicted waypoints lead to collision-free areas while
observing trees. More real-world experiments can be found
in the supplementary material.

5. Conclusion
We have presented a novel pipeline for autonomous nav-

igation, that takes streams of a single event camera and pre-
dicts a collision-free trajectory. We show that our planner
can fly a quadrotor with only 1 ms horizon of events while
achieving a success rate of 79%. This is about 30x faster
than conventional depth or RGB camera pipelines and the
success rate is similar or better.

While this is an exciting step towards event-based agile

tree

tree

Figure 8. Trained Planner transfers zero-shot in the real world. We
provide two visualizations with real-world events and a top-down
view of predicted waypoints (red curve). The predicted waypoints
lead to collision-free areas while observing obstacles.

autonomous systems, there are multiple opportunities for
future work. For example, solving the optimization problem
to find collision-free trajectories is computationally expen-
sive and the generalization to new environments is limited.
One interesting avenue could be to explore deep neural net-
works for planning to reduce latency and improve general-
ization. In order to ensure a consistent representation of the
environment over time, the event processing pipeline may
benefit from recurrent modules. We hope that this work will
inspire more research in the space of low-latency perception
for autonomous navigation.
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